

MuYu

MY-BT301C

Bluetooth 5.1 Audio + Data Module
Version 1.0

Contact Us

Shenzhen Muyu Technology Co., Ltd

Email: info@muyusmart.com

Zipcode: 518100

Web: www.muyumodule.com

Release Recode

Version	Date	Comments
1.0	2020/06/01	Initial Version

chellis IIIII equipos

Content

1	INTR	ODUCTION	4				
	1.1	Overview	4				
	1.2	Features	4				
	1.3	Application	4				
2	GENE	RAL SPECIFICATION	5				
3	HARE	OWARE SPECIFICATION	5				
	3.1	Block Diagram and Pin Definition Diagram	5				
	3.2	PIN Definition Descriptions	7				
4	4. PH	YSICAL INTERFACE	8				
	4.1	General Purpose Analog IO	8				
	4.2	RF Interface	8				
	4.3	UART Interface	9				
	4.4	Enhanced DSP					
5	ELECT	ELECTRICAL CHARACTERISTICS					
	5.1	Absolute Maximum Ratings	10				
	5.2	Recommended Operating Conditions	10				
6	ESD 8	& MSL	10				
7		MMENDED TEMPERATURE REFLOW PROFILE					
8	MECH	HANICAL DETAIL	12				
	8.1	Physical Dimensions	12				
9	HARE	OWARE INTEGRATION SUGGESTIONS	13				
	9.1	Soldering Recommendations	13				
	9.2	Layout Guidelines (Internal Antenna)	13				
	9.3	Layout Guidelines (External Antenna)	14				
	9.4	General Design Suggestions	15				
10	PROE	DUCT PACKAGING INFORMATION	15				
11	APPL	ICATION SCHEMATIC	16				

1 Introduction

1.1 Overview

MY-BT301C is a BLE+SPP+audio Bluetooth module. Uses Qualcomm QCC5125 chip solution, supports analog audio, built-in DSP, and supports multiple functions and protocols such as BLE, SPP, AVRCP, I²S, APTX, LDAC, etc.

MY-BT301C uses UART as a programming interface, and customers can use AT commands to read or write the configuration of the module through UART. Can provide more possibilities for customers' applications.

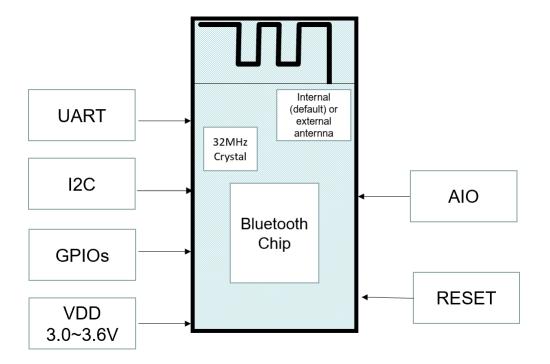
1.2 Features

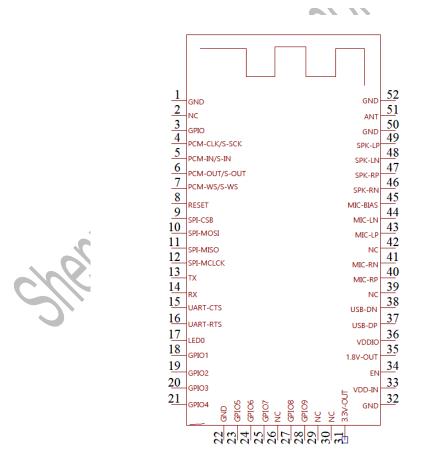
- BLE Bluetooth 5.1
- Stamp hole package
- Low power consumption
- Transmit power level Class 2.0
- The default UART baud rate is 115200bps, which can support 1200bps to 921.6Kbps
- UART hardware interface
- Support Bluetooth protocol: HID, BLE, SPP, AVRCP, A2DP, HFP, PBAP
- Support Bluetooth decoding: SBC, AAC, aptX HD, LDAC
- Support audio interface: analog audio (differential), I2S, PCM
- Broadcast audio
- Support TWS
- Call noise reduction ENC

1.3 Application

- Car DSP/DSD audio
- Bluetooth audio
- Car central control
- conference system
- Bluetooth earphone
- Bluetooth receiver
- Bluetooth USB sound card

2 General Specification


Table1:


Facture.	Constituentian
Feature	Specification Specification
Chip	QCC5125
Model	MY-BT301C
Dimensions	13mm(W) X 27mm(L) X 2.2mm(H)
Bluetooth Version	Bluetooth 5.1 Dual-Mode
Operating Voltage Range	3.0 ~ 3.6V
Transmit Power	9 dBm (Max)
Receive Sensitivity	-97dBm@0.1%BER
Frequency	2.402GHz -2.483GHz ISM band
Modulation	GFSK, π/4-DQPSK, 8-DPSK
Crystal	32MHz
Hopping & Channels	1600hops / sec,1MHz channel space,80 Channels
RF Input Impedance	50 Ω
Antenna	PCB Antenna/External Antenna
Interface	UART/I ² S
Profile	HID、BLE、SPP、AVRCP、A2DP、HFP、PBAP
Others	Bluetooth Low Energy
Work Tem	-40°C to +80°C
Storage Tem	-40°C to +105°C
Humidity	10%~95% Non-Condensing
Environment	RoHS Compliant

3 Hardware Specification

3.1 Block Diagram and Pin Definition Diagram

3.2 PIN Definition Descriptions

Table2:

Pin	Pin Name	Туре	PIN Decriptions
1	GND	I/O	Power Ground
2	NC	NC	NC
3	GPIO		Programmable input/ output line
4	PCM_CLK/I ² S_SCK	I/O	PCM or I ² S CLK
5	PCM_IN/I ² S_IN	I/O	PCM or I ² S input
6	PCM_OUT/I ² S_OUT	I/O	PCM or I ² S output
7	PCM_WS/I ² S_WS	I/O	PCM or I ² S WS
8	RESET	I	Reset, pull down for 5ms to reset
9	SPI_CSB	I/O	SPI optional, active low
10	SPI_MOSI	I/O	SPI input
11	SPI_MISO	I/O	SPI output
12	SPI_MCLCK	I/O	SPI clock
13	TX	I/O	UART TX
14	RX	I/O	UART RX
15	UART_CTS	I/O	UART clear to send, active low
16	UART_RTS	I/O	UART request to send, active low
17	LED0	1/0	LED driver
18	GPIO1	1/0	Programmable input/ output line
19	GPIO2	I/O	Programmable input/ output line
20	GPIO3	NC	Programmable input/ output line
21	GPIO4	VSS	Programmable input/ output line
22	GND	VSS	Power Ground
23	GPIO5	I/O	Programmable input/ output line
24	GPIO6	I/O	Programmable input/ output line
25	GPIO7	I/O	Programmable input/ output line
26	NC	I/O	Programmable input/ output line
27	GPIO8	I/O	Power mode, low level in running mode, high level in
			sleep mode
28	GPIO9	NC	NC
29	NC	I/O	Programmable input/ output line
30	NC	I/O	Programmable input/ output line
31	3.3V_OUT		Positive supply for 3.3V
32	GND	GND	Power Ground
33	VDD_IN	VDD	Power supply voltage 3.3V
34	EN	I	Power Enable
			The PIN on electricity than VDD_IN foot 100ms delay
35	1.8V_OUT	VDD	1.8V power regulator output

36	VDDIO	VDD	Power supply for IO port (3.3V)
37	USB_DP	USB	USB data positive
38	USB_DN	USB	USB data negative
39	NC	NC	NC
40	MIC_RP	MIC/LINE	Line or MIC input positive, right
		IN_RP	
41	MIC_RN	MIC/LINE	Line or MIC input negative, right
		IN_RN	
42	NC	NC	NC
43	MIC_LP	MIC/LINE	Line or MIC input positive, left
		IN_LN	
44	MIC_LN	MIC/LINE	Line or MIC input negative, left
		IN_LN	
45	MIC_BIAS	MIC power	MIC bias
46	SPK_RN	RN	Speaker output negative, right
47	SPK_RP	RP	Speaker output positive, right
48	SPK_LN	LN	Speaker output negative, left
49	SPK_LP	LP	Speaker output positive, left
50	GND	GND	Antenna GND
51	ANT	Antenna	External antenna interface
52	GND	GND	Antenna GND

4 4. Physical Interface

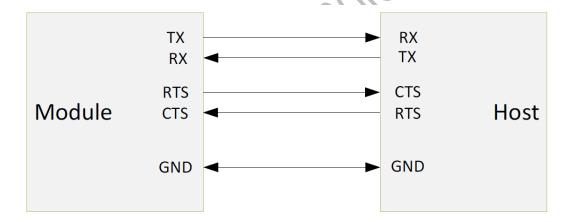
4.1 General Purpose Analog IO

9 general-purpose GPIOs are defined in the module. These GPIOs can be configured through firmware to realize various functions, such as button control, LED drive or interrupt signal of the main controller. Hang in the air when not in use, no need to connect to any circuit. The I/O type of each I/O pin can be configured as input or output mode by firmware.

4.2 RF Interface

BER2402–2480 MHz Bluetooth 5.0 Maximum transmit power: 9dBm

Maximum Receive Sensitivity -97dBm@0.1%BER


4.3 UART Interface

The four signal pins are used to implement the UART function. When MY-BT301C is connected to another digital device, UART_RX and UART_TX transfer data between the two devices. The remaining two pins, UART_CTS and UART_RTS, can be used to implement RS232 hardware flow control, and they are both active at low level, that is, transmission is allowed at low level and stops at high level.

Table 3: UART Parameter

Parameter		Value			
	Minimum	1200 baud (≤2%Error)			
Baudrate	Default	115200bps(≤1%Error)			
	Max	921600bps(≤1%Error)			
Flow control		RTS/CTS,(default none)			
Parity		None,Odd or Even			
Number of stop bits		1			
Bits per channel		8			

When connecting the module to a host, please make sure to follow

UART Connection

4.4 Enhanced DSP

Built-in 120 MHz Qualcomm Kalimba ten-bit audio DSP, which greatly improves the fidelity of DAC, can support 8K, 16K, 44.1K, 48K, 96K audio input and output, microphone sensitivity is 92dB, audio output signal-to-noise ratio is 100dbA

5 Electrical Characteristics

5.1 Absolute Maximum Ratings

The absolute maximum ratings of the supply voltage and voltage on the digital and analog pins of the module are listed below. Exceeding these values will cause permanent damage. The average GPIO pin output current is defined as the average current value flowing through any corresponding pin in a 100mS period. The total average GPIO pin output current is defined as the average current value flowing through all corresponding pins in a 100mS period. The maximum output current is defined as the peak current value flowing through any corresponding pin.

Table4: Maximum Ratings

Parameter	Min	Max	Unit
V _{IN} - I/O (VDDIO)	-0.3	+3.6	V
V _{IN} - (VDD)	-0.3	+3.6	V
T _{OT} – Operating Temperature	-40	+80	°C
T _{ST} - Storage Temperature	-40	+105	°C

5.2 Recommended Operating Conditions

Table 5: Recommended Operating Conditions

Parameter		Min	Туре	Max	Unit
V _{IN} - Terminal voltages (VDD)	111112	3.0	3.3	3.6	V
V _{IN} - I/O Voltages (VDDIO)		3.0	3.3	3.6	V

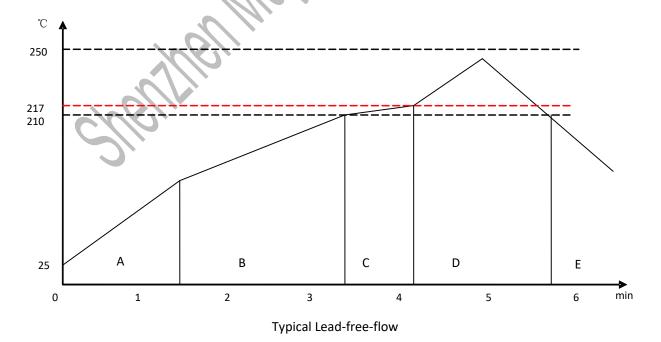
6 ESD & MSL

Table 6:

Parameter	Value
MSL:	Grade: 3
ECD.	HBM: Class-2
ESD:	CDM: Class-B

7 Recommended Temperature Reflow Profile

Prior to any reflow, it is important to ensure the modules were packaged to prevent moisture absorption. New packages contain desiccate (to absorb moisture) and a humidity indicator card to display the level maintained during storage and shipment. If directed to bake units on the card, please check the Picture below and follow instructions specified by IPC/JEDEC J-STD-033.


Note: The shipping tray cannot be heated above 65°C. If baking is required at the higher temperatures displayed in the Picture below, the modules must be removed from the shipping tray.

Any modules not manufactured before exceeding their floor life should be re-packaged with fresh desiccate and a new humidity indicator card. Floor life for MSL (Moisture Sensitivity Level) 3 devices is 168 hours in ambient environment 30°C/60%RH

Table 7: Recommended baking times and temperatures

	125°C Baking Temp		90°C/≤ 5%RI	H Baking Temp	40°C/ ≤ 5%RH Baking Temp	
MSL	Saturated @	Floor Life Limit	Saturated @	Floor Life Limit	Saturated @	Floor Life Limit
	30°C/85%	+ 72 hours@	30°C/85%	+ 72 hours@	30°C/85%	+ 72hours@
		30°C/60%		30°C/60%		30°C/60%
3	9 hours	7 hours	33hours	23 hours	13 days	9 days

The design of the surface mount module is easy to manufacture, including reflow soldering to the PCB motherboard. Ultimately, it is the customer's responsibility to choose a suitable solder paste and ensure that the furnace temperature during reflow meets the requirements of the solder paste. The surface mount module complies with the J-STD-020D1 standard for reflow soldering temperature. The welding profile depends on the various parameters that need to be set for each application. The data here is only for the guidance of reflow soldering.

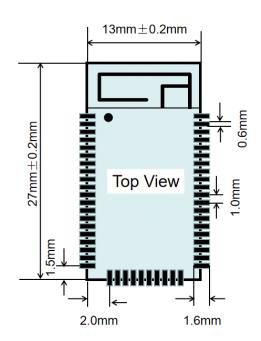
Preheating zone (A)-This zone heats up at a controlled rate, with a typical value of 0.5-2°C/s. The purpose of this area is to preheat the PCB board and components to 120~150°C. At this stage, the heat needs to be evenly distributed to the PCB board, and the solvent is completely removed to reduce the thermal shock of the components.

Equilibrium Zone 1 (B)-At this stage, the flux becomes soft and evenly encapsulates the solder particles and spreads them on the PCB board to prevent them from being re-oxidized. As the temperature rises and the flux is liquefied, each activator and rosin are activated and begin to eliminate the oxide film formed on the surface of each solder particle and PCB board. For this area, the recommended temperature is 150° to 210°, and the time is 60 to 120 seconds.

Equilibrium zone 2 (C) (optional)-In order to solve the problem of upright parts, it is recommended to keep the temperature at 210-217°C for about 20 to 30 seconds.

Reflow zone (D)-The curve in the figure is designed for Sn / Ag3.0 / Cu0.5. It can be a reference for other lead-free solders. The peak temperature should be high enough to achieve good wettability, but not too high to cause discoloration or damage to the component. Excessive welding time will lead to intermetallic growth, leading to brittle solder joints. The recommended peak temperature (Tp) is 230~250°C. When the temperature is higher than 217°C, the welding time should be 30 to 90 seconds.

Cooling zone (E)-The cooling rate should be fast to keep the solder particles small, which will provide a longer lasting solder joint. The typical cooling rate should be 4°C.


8 Mechanical Detail

8.1 Physical Dimensions

■ Dimension: 13mm(W) x 27mm(L) x 2.2 mm(H) Tolerance: ±0.2mm

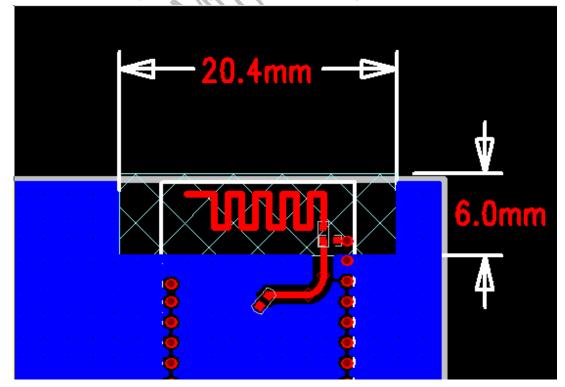
■ Pad size: 1.6mmX0.6mm Tolerance: ±0.1mm

■ Pad pitch: 1.0mm Tolerance: ±0.1mm

9 Hardware Integration Suggestions

9.1 Soldering Recommendations

MY-BT301C is compatible with the industry standard reflow profile of lead-free solder. The reflow profile used depends on the thermal quality of the entire assembled PCB, the heat transfer efficiency of the oven, and the specific type of solder paste used. Please refer to the data sheet of the specific solder paste for the profile configuration.

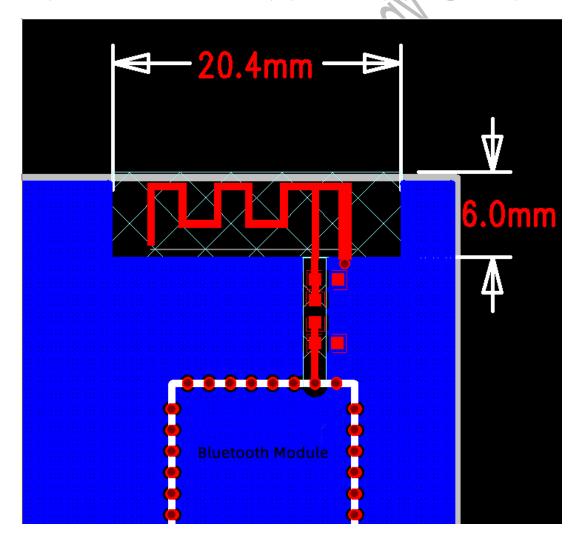

MuYu will provide the following suggestions for welding modules to ensure the reliability of the solder joints and operations of the modules after welding. Since the reflow profile used is dependent on the process and layout, the best reflow profile should be studied on a case-by-case basis. Therefore, the following recommendations should be used as a starting point.

9.2 Layout Guidelines (Internal Antenna)

It is strongly recommended to use good layout practices to ensure the normal operation of the module. Placing copper or any metal close to the antenna will affect the performance of the antenna, thereby deteriorating the working efficiency of the antenna. The metal shield around the antenna will prevent signal radiation, so the metal casing should not be used with the module. Please use more grounding vias at the edge of the grounding area.

The following suggestions can help avoid EMC problems in the design. Please note that each design is unique, and the following description does not consider all basic design rules, such as avoiding capacitive coupling between signal lines. The following description aims to avoid EMC problems caused by the RF part of the module. Please consider carefully to avoid problems with the digital signal in the design.

Make sure that the loop of the signal wire is as short as possible. For example, if the signal enters the inner layer through vias, always use ground vias around the pad. And place them closely and symmetrically around the signal vias. Any sensitive signal traces and loops should be completed on the inner layer of the PCB as much as possible. Sensitive signal lines should have an area surrounded by ground wires above and below. If this is not possible, make sure that the return path is shortest (for example, use the ground wire next to the signal wire)



9.3 Layout Guidelines (External Antenna)

In the absence of on-board antenna design, module placement and PCB layout are critical to optimizing module RF performance.

- 1. The microstrip line (the wiring from the antenna to the EXT ANT port on the module end) should be 50Ω ;
- 2. The microstrip line should be as straight as possible and as short as possible. When it is necessary to turn, it should be as arc as possible;
- 3. The width of the microstrip line is about 0.5mm, and the distance between the copper coating and the microstrip line is about 0.5mm;
- 4. To avoid interference to the module signal; the location of the external antenna and the EXT_ANT port of the module should be far away from any noise sources and digital lines, the antenna should be placed close to the board, no components and copper should be placed around, and no wiring should be placed as far as possible, Keep it intact;
- 5. A Π-type matching network circuit is needed between the microstrip lines, and placed as close to the antenna as possible to better match the impedance;
 - 6. The RF key circuit of the module should be clearly separated from any digital circuit on the system board

9.4 General Design Suggestions

Wireless products are not suitable for the use of external metal casings and large metal components around them The length of PCB traces or wires should be as short as possible.

The distance between the connection on the top layer and the ground area should be at least as large as the thickness of the dielectric.

Avoid placing RF close to the digital part of the system board.

In order to reduce signal loss, avoid wiring the microstrip line in sharp corners. Chamfered or rounded wiring is preferred to rectangular wiring; 45-degree oblique wiring is better than pure 90-degree wiring.

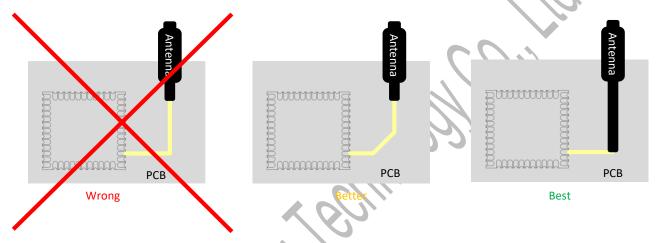


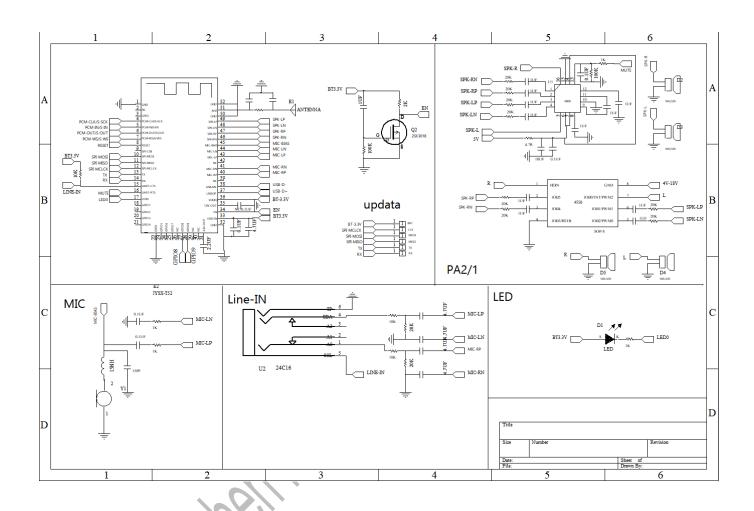
Figure 11: Recommended Trace Connects Antenna and the Module

Avoid placing RF connections on the other side of the module. The distance from the microstrip line to the ground plane at the bottom of the receiver is very small and has huge tolerances. Therefore, the impedance of this part of the trace cannot be controlled. Use as many vias as possible to connect the ground planes.

10 Product Packaging Information

Pallet packaging

■ Pallet size: 180mm * 195mm


■ 50pcs/Pallet

MOQ: 1000pcs

11 Application Schematic

